FireWorks and the Materials Project:
Facilitating Scientific Workflows

Morgan Hargrove
Louisiana State University
Baton Rouge, LA

mhargrove@cct.Isu.edu

ABSTRACT

This paper describes the design, development, and real-world
application of BaseSite, a front-end user interface for the scientific
workflow system FireWorks.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques —
evolutionary prototyping, user interfaces.

General Terms
Design, Human Factors.

Keywords
User interfaces; scientific workflow system; queries; performance
dashboard.

1. INTRODUCTION

As scientific research and experimentation move more towards a
system of data-driven, distributed collaboration, the need for
innovative new tools to facilitate these processes becomes readily
apparent. One such tool is FireWorks, a general purpose
scientific workflow management system that is currently being
used by the Materials Project. BaseSite was developed in order to
simplify the use of FireWorks by providing a visual way to easily
monitor the system’s status.

2. BACKGROUND
2.1 The Materials Project

Technological innovation — faster computers, more efficient solar
cells, more compact energy storage — is often enabled by materials
advances. Yet, it takes an average of eighteen years to move new
materials discoveries from the research laboratory to the market.
This is largely because materials designers operate with very little
information and must painstakingly tweak new materials in the
lab. Computational materials science is now powerful enough
that it can predict many properties of materials before those
materials are ever synthesized in the lab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Anubhav Jain, Dan Gunter
Lawrence Berkeley National Laboratory
Berkeley, CA

{ajain,dkgunter}@Ibl.gov

The Materials Project [1,2,3] aims to accelerate materials
innovation and design by providing free access to a searchable,
interactive database of computed materials properties spanning
most known inorganic compounds. By scaling materials
computations over supercomputing clusters, the Materials Project
has computed some properties of over 80,000 materials, helping
to remove guesswork from materials design in a variety of
applications. The current Materials Project implementation runs
as a 24/7 production system with over 2,500 registered users.

Researchers are able to use innovative design tools provided by
the Materials Project to data-mine scientific trends in materials
properties. Experimental research can then be targeted to the
most promising compounds from computational data sets.

2.2 e-Science

Computation is currently accepted as the third paradigm of
science, alongside experimentation and theory. In sciences from
biology to particle physics, hundredfold to thousandfold increases
in the data from simulations and post-analysis of experiments has
caused a fourth paradigm to emerge, as proposed by Jim Gray [4].
This fourth paradigm, referred to as “e-Science,” lays the
foundation for exploratory data-driven science to complement
traditional hypothesis-driven research through emphasis on a
collaborative, networked, and data-driven framework.

By utilizing a distributed system of computing resources, the
Materials Project is pioneering e-Science in the materials science
community. Its data-centered framework allows scientists to
collaborate on large-scale experiments and derive scientific
insight towards materials science in a way that is not possible with
more traditional scientific tools.

2.3 Scientific Workflow Systems

In order to enable the creation of reliable, reproducible results
within e-Science, scientists have begun developing scientific
workflows to track the evolution of their data, results, and
discoveries. A scientific workflow system is designed to compose
or execute a series of computational or data manipulation steps,
also known as a workflow. Scientific workflows are a crucial
element that provide a way for scientists to model, design,
execute, and re-run their experiments.

Computations for the Materials project are currently driven by a
workflow management system based on the high-throughput
framework FireWorks [5].

2.4 FireWorks

FireWorks is a Python [6] based, open-source code for defining,
managing, and executing scientific workflows. It can be used to
automate most types of calculations over arbitrary computing
resources, including those that have a queuing system. FireWorks
is intended to be a friendly workflow software that is easy to get
started with but flexible enough to handle complicated use cases.
Basic operation of FireWorks is simple, and it can be run on
resources ranging from a single laptop to a supercomputing
center.

2.4.1 Features and Limitations

Some, but not all, of FireWorks’ features include storage
management of workflows through MongoDB (a noSQL datastore
that is flexible and easy to use) [7], a clean and powerful Python
APl for defining, submitting, running, and maintaining
workflows, the ability to distribute calculations over multiple
worker nodes, each of which might use a different queuing system
and process a different type of calculation. FireWorks provides
support for dynamic workflows that react to results
programmatically, allowing for users to pre-specify code that
performs actions, such as terminating a workflow, adding a new
step, or completely altering the workflow based on the output of a
job. FireWorks also features automatic detection of duplicate
sub-workflows, skipping duplicated portions between two or more
workflows while still running unique sections.

FireWorks has not yet been stress-tested on an extremely large
scale (hundreds of jobs within a single workflow or millions of
separate workflows). FireWorks also does not automatically
optimize the distribution of computing tasks over worker nodes in
order to minimize data movement or to match jobs to appropriate
hardware; however, users can define these such optimizations
themselves. To date, FireWorks has only been tested on Linux
and Macintosh machines (not Windows platforms).

2.4.2 Workflow Model

Workflows in FireWorks are composed of three main
components: FireTasks, FireWorks, and Workflows. FWActions
may also exist between FireWorks.

2.4.2.1 FireTasks

A FireTask is an atomic computing job. It can call a single shell
script or execute a single Python function that is defined by the
user, either within FireWorks or in an external package. Non-
Python code, such as C++ or Java, can be run by calling the code
as a shell script or writing a Python function that executes your
code. Each FireTask receives input data in the form of a
JavaScript Object Notation (JSON) [8] specification, or “spec.”

2.4.2.2 FireWorks

A FireWork contains the JSON spec that includes all the
information needed to create a job. The spec typically contains an
array of FireTasks to execute in sequence as well as any input
parameters to pass to your FireTasks. The same function can
easily be performed over different input data by creating
FireWorks with identical FireTasks and different input parameters
in the spec. Specs can be designed however the user would like,
as long as it’s valid JSON. The JSON format used for FireWork
specs is extremely flexible, very easy to learn, and immediately
makes rich searches over the input data available to end users
through MongoDB’s JSON document search capabilities.

2.4.2.3 Workflows

A workflow is essentially a set of FireWorks with dependencies
between them. Workflows can be designed to be as simple as
requiring a “parent” FireWork to finish and generate output files
before running “child” FireWorks or as complex as automatically
re-running a crashed job at a different FireWorker with somewhat
different parameters.

2.4.2.4 FWActions

An FWAction that can store data or modify the Workflow
depending on the output may be returned between FireWorks. An
FWAction can pass data to the next step, cancel the remaining
parts of the Workflow, or even add new FireWorks that are
defined within the object.

FireWork 1

Spec: {input}
FireTask

FireTask

FWAction FWAction

FireWork 2 FireWork 3

Spec: {input} Spec: {input}

FireTask

FireTask

FireTask

FireTask

Figure 1. The FireWorks Workflow model

More sophisticated types of workflow operations can be used to
send different categories of FireWorks to different FireWorkers,
get the status of all existing jobs, where they’re running, and how
long they took to run or waited in the queue, create and modify
job priorities, or even handle job failures and crashes dynamically
by automatically creating FireWorks that fix crashed jobs through
an FWAction.

2.4.3 Basic Infrastructure

FireWorks has a loosely-coupled, modular infrastructure that is
intentionally hackable, allowing users to utilize some FireWorks
components without using everything in order to more easily
adapt it to their individual application(s).

FireWorks follows a centralized server and worker model,
meaning that there are two essential components to a FireWorks
installation: the LaunchPad and one or more FireWorkers.

2.4.3.1 LaunchPad

LaunchPad is the central server in FireWorks. LaunchPad’s
primary function is to manage workflows. When a user adds new
workflows, queries for the state of workflows, or re-runs existing
workflows, these commands are carried out through the
LaunchPad.

2.4.3.2 FireWorkers

FireWorks depends upon one or more workers, known as
“FireWorkers,” to run jobs. The FireWorkers request workflows
from the LaunchPad, execute them, and send back information. A
FireWorker can be as simple as the same workstation used to host
the LaunchPad or as complex as a national supercomputing center
with a queuing system.

=

FIREWORKER FIREWORKER

Figure 2. The basic FireWorks infrastructure

These components are largely decoupled, making FireWorks
generally easier to use. End users can add new workflows to the
LaunchPad without worrying about the details of how and where
the workflows will be run, though they have the option to tailor
the details of job execution if they wish. This keeps the workflow
specifications lightweight, tidy, and easy to learn and use. On the
opposite end, administrators can configure worker computers
without worrying about where workflows are coming from or
what they look like, although they can easily and flexibly assign
jobs to certain resources if desired. Running FireWorks on a
heterogeneous set of worker computers is simple because it uses
essentially the same internal code to run on a simple workstation
as it does to run at a large supercomputing center.

3. APPROACH

BaseSite is the newly developed front-end user interface for
FireWorks. BaseSite aims to facilitate the use of FireWorks in
real-world scenarios, such as the Materials Project, by assisting
collaboration, particularly among users who may not have
experience or be comfortable with coding. This is accomplished
by providing a simple, visual way to monitor the system’s status.
Though BaseSite was initially designed for use with the Materials
Project, it can be utilized for any FireWorks application.

3.1 Design and Implementation

BaseSite is a website that serves as a performance dashboard for
monitoring the status of a FireWorks system A dashboard is a
visual display of the most important information needed to
achieve one or more objectives, consolidated and arranged on a
single screen so the information can be monitored at a glance [9].
Effective dashboards are easy to understand and can be utilized by
users as well as administrators.

3.1.1 Framework

BaseSite was developed using Django [10], an open source, high-
level Python Web framework that encourages rapid development
and clean, pragmatic design, making it particularly useful for the
creation of complex, database driven websites.

3.1.2 Querying Data

BaseSite gathers information by using MongoDB queries to
directly access the database that is associated with a particular
FireWorks system. For example, in the Materials Project
application of BaseSite, data is collected from a FireWorks
production database hosted at NERSC [11]. These queries are
run every time BaseSite is viewed, resulting in a live display of
the status of the current database.

3.2 Features

BaseSite includes several different views and features, including a
home page, index pages, and various information pages. Different
sections of content can be clicked on to easily navigate to more
detailed information, or URLs can be used to directly access
desired content.

3.2.1 Home Page

The BaseSite home page acts as the primary dashboard for
information monitoring. It features a count of the total completed
FireWorks to date as well as several different charts depicting the
current database status and important information about the most
recent FireWorks and Workflows.

Current Database Status
Fireworks Workflows
110,079 23,189
DEFUSED 5,283 2,501

WAITING 2,534
READY 765
RESERVED 2
FIZZLED 359 138
RUNNING 19 78
COMPLETED 257,133 64,658
TOTAL 376,174 91,176

Figure 3. A table found on the home page, depicting counts of
FireWorks and Workflows based on their current status.
“Defused” refers to jobs that were canceled, and “fizzled”
refers to jobs that have unexpectedly failed.

ARCHIVED

612

3.2.2 Index Pages

BaseSite contains two index pages, one for FireWorks and one for
Workflows. Each of these pages initially loads with information
about the most recently updated FireWorks or Workflows.

Newest Fireworks

ID Name State
376175 02_Si1--VASP_db_insertion WAITING
376174 02_5i1--GGA_static READY
376173 02_Si1--VASP_db_insertion WAITING

376172 02_Si1--GGA_band_structure_v2 WAITING

376170 02_Si1--VASP_db_insertion WAITING
376168 02_Si1--GGA_Uniform_v2 WAITING
376166 02_Sil1--VASP_db_insertion READY
376164 02_5i1--GCA_static_v2 FIZZLED
376171 02_Si1--VASP_db_insertion WAITING

376169 02_Si1--GGA_hand_structure_v2 WAITING
1 0of 37618 > ==

Figure 4. A table on the FireWorks index page

This information can be further sorted using simple click
navigation to view only FireWorks or Workflows of a certain
state.

Fizzled Workflows
ID Name
362280 Bel Na2 06 Si2
361552 Pd3 Rb2 Se4

156491 CI1 S1
360320 Mn2 Na2 S3
359364 04 Pb2 5nl
359673 03 Sm2
357643 02 Sil
354169 F6 K2 Zrl
340777 CIT H5 N2
149024 F6 Hf1 K2

<< < 9o0f 14 = ==

Figure 5. A table displaying information about Fizzled
Workflows

3.2.3 Information Pages

Every FireWork or Workflow 1D in BaseSite can be clicked on to
navigate to a page containing its JSON spec. Users can choose to
view the spec with varying levels of detail: less, more, or all.

{
"name": "Mgl 0O3_Sil--VASP_db_ insertion",
"fw id": 354099,
"state": "COMPLETED",
"created on": "2013-06-30T10:42:03.523022"
}

Figure 6. The JSON spec for the FireWork with 1D 354099,
displaying “less” information

The entirety of this data includes all of the input that was
specified at the time of the FireWork or Workflow’s creation,
which directory the run occurred in, how long the run took, and
several other important pieces of information.

4. FUTURE WORK

An alpha version of BaseSite is currently available as part of the
FireWorks installation. Plans for future work include the addition
of different charts and visualizations, simplification of the JSON
information pages, improved overall site navigation, and the
implementation of a search function to more easily locate data of
interest.

5. ACKNOWLEDGMENTS

This work was supported in part by TRUST (Team for Research
in Ubiquitous Secure Technology), which receives support from
the National Science Foundation (NSF award number CCF-
0424422), with additional support from Lawrence Berkeley
National Laboratory and the U.S. Department of Energy.

Special thanks to Anubhav Jain and Dan Gunter for their
mentorship and guidance throughout the duration of this project.

6. REFERENCES

[1] The Materials Project. http://www.materialsproject.org/.

[2] Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D.,
Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and
Persson, K.A. 2013. The Materials Project: A materials
genome approach to accelerating materials innovation.
Applied Physics Letters Materials, 2013, 1(1), 011002.
DOI= http://dx.doi.org/10.1063/1.4812323/.

[3] Gunter, D., Cholia, S., Jain, A., Kocher, M., Persson, K.,
Ramakrishnan, L., Ong, S.P., and Ceder, G. 2012.
Community Accessible Datastore of High-Throughput
Calculations: Experiences from the Materials Project. 5%
workshop on Many-Task Computing Grids and
Supercomputers (MTAGS), 2012.

[4] Gray, J. 2007. E-Science: A Transformed Scientific Method.
NRC-CSTB talk (Mountain View, CA, January 11, 2007).

[5] FireWorks 0.18 documentation.
http://pythonhosted.org/FireWorks/.

[6] Python Programming Language.
http://www.python.org/.

[7] A Brief Introduction to MongoDB.
http://Avww.10gen.com/static/downloads/ mongodb
introduction.pdf.

[8] Introducing JSON. http://www.json.org/.

[9] Few, S.2006. Information Dashboard Design: The
Effective Visual Communication of Data.

[10] Django: The Web framework for perfectionists with
deadlines. https://www.djangoproject.com/.

[11] National Energy Research Scientific Computing
Center: NERSC. http://www.nersc.gov/.

