
FireWorks and the Materials Project:

Facilitating Scientific Workflows
Morgan Hargrove

Louisiana State University
Baton Rouge, LA

mhargrove@cct.lsu.edu

Anubhav Jain, Dan Gunter
Lawrence Berkeley National Laboratory

Berkeley, CA
{ajain,dkgunter}@lbl.gov

ABSTRACT

This paper describes the design, development, and real-world

application of BaseSite, a front-end user interface for the scientific

workflow system FireWorks.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –

evolutionary prototyping, user interfaces.

General Terms

Design, Human Factors.

Keywords

User interfaces; scientific workflow system; queries; performance

dashboard.

1. INTRODUCTION
As scientific research and experimentation move more towards a

system of data-driven, distributed collaboration, the need for

innovative new tools to facilitate these processes becomes readily

apparent. One such tool is FireWorks, a general purpose

scientific workflow management system that is currently being

used by the Materials Project. BaseSite was developed in order to

simplify the use of FireWorks by providing a visual way to easily

monitor the system’s status.

2. BACKGROUND

2.1 The Materials Project
Technological innovation – faster computers, more efficient solar

cells, more compact energy storage – is often enabled by materials

advances. Yet, it takes an average of eighteen years to move new

materials discoveries from the research laboratory to the market.

This is largely because materials designers operate with very little

information and must painstakingly tweak new materials in the

lab. Computational materials science is now powerful enough

that it can predict many properties of materials before those

materials are ever synthesized in the lab.

The Materials Project [1,2,3] aims to accelerate materials

innovation and design by providing free access to a searchable,

interactive database of computed materials properties spanning

most known inorganic compounds. By scaling materials

computations over supercomputing clusters, the Materials Project

has computed some properties of over 80,000 materials, helping

to remove guesswork from materials design in a variety of

applications. The current Materials Project implementation runs

as a 24/7 production system with over 2,500 registered users.

Researchers are able to use innovative design tools provided by

the Materials Project to data-mine scientific trends in materials

properties. Experimental research can then be targeted to the

most promising compounds from computational data sets.

2.2 e-Science
Computation is currently accepted as the third paradigm of

science, alongside experimentation and theory. In sciences from

biology to particle physics, hundredfold to thousandfold increases

in the data from simulations and post-analysis of experiments has

caused a fourth paradigm to emerge, as proposed by Jim Gray [4].

This fourth paradigm, referred to as “e-Science,” lays the

foundation for exploratory data-driven science to complement

traditional hypothesis-driven research through emphasis on a

collaborative, networked, and data-driven framework.

By utilizing a distributed system of computing resources, the

Materials Project is pioneering e-Science in the materials science

community. Its data-centered framework allows scientists to

collaborate on large-scale experiments and derive scientific

insight towards materials science in a way that is not possible with

more traditional scientific tools.

2.3 Scientific Workflow Systems
In order to enable the creation of reliable, reproducible results

within e-Science, scientists have begun developing scientific

workflows to track the evolution of their data, results, and

discoveries. A scientific workflow system is designed to compose

or execute a series of computational or data manipulation steps,

also known as a workflow. Scientific workflows are a crucial

element that provide a way for scientists to model, design,

execute, and re-run their experiments.

Computations for the Materials project are currently driven by a

workflow management system based on the high-throughput

framework FireWorks [5].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

2.4 FireWorks
FireWorks is a Python [6] based, open-source code for defining,

managing, and executing scientific workflows. It can be used to

automate most types of calculations over arbitrary computing

resources, including those that have a queuing system. FireWorks

is intended to be a friendly workflow software that is easy to get

started with but flexible enough to handle complicated use cases.

Basic operation of FireWorks is simple, and it can be run on

resources ranging from a single laptop to a supercomputing

center.

2.4.1 Features and Limitations
Some, but not all, of FireWorks’ features include storage

management of workflows through MongoDB (a noSQL datastore

that is flexible and easy to use) [7], a clean and powerful Python

API for defining, submitting, running, and maintaining

workflows, the ability to distribute calculations over multiple

worker nodes, each of which might use a different queuing system

and process a different type of calculation. FireWorks provides

support for dynamic workflows that react to results

programmatically, allowing for users to pre-specify code that

performs actions, such as terminating a workflow, adding a new

step, or completely altering the workflow based on the output of a

job. FireWorks also features automatic detection of duplicate

sub-workflows, skipping duplicated portions between two or more

workflows while still running unique sections.

FireWorks has not yet been stress-tested on an extremely large

scale (hundreds of jobs within a single workflow or millions of

separate workflows). FireWorks also does not automatically

optimize the distribution of computing tasks over worker nodes in

order to minimize data movement or to match jobs to appropriate

hardware; however, users can define these such optimizations

themselves. To date, FireWorks has only been tested on Linux

and Macintosh machines (not Windows platforms).

2.4.2 Workflow Model
Workflows in FireWorks are composed of three main

components: FireTasks, FireWorks, and Workflows. FWActions

may also exist between FireWorks.

2.4.2.1 FireTasks
A FireTask is an atomic computing job. It can call a single shell

script or execute a single Python function that is defined by the

user, either within FireWorks or in an external package. Non-

Python code, such as C++ or Java, can be run by calling the code

as a shell script or writing a Python function that executes your

code. Each FireTask receives input data in the form of a

JavaScript Object Notation (JSON) [8] specification, or “spec.”

2.4.2.2 FireWorks
A FireWork contains the JSON spec that includes all the

information needed to create a job. The spec typically contains an

array of FireTasks to execute in sequence as well as any input

parameters to pass to your FireTasks. The same function can

easily be performed over different input data by creating

FireWorks with identical FireTasks and different input parameters

in the spec. Specs can be designed however the user would like,

as long as it’s valid JSON. The JSON format used for FireWork

specs is extremely flexible, very easy to learn, and immediately

makes rich searches over the input data available to end users

through MongoDB’s JSON document search capabilities.

2.4.2.3 Workflows
A workflow is essentially a set of FireWorks with dependencies

between them. Workflows can be designed to be as simple as

requiring a “parent” FireWork to finish and generate output files

before running “child” FireWorks or as complex as automatically

re-running a crashed job at a different FireWorker with somewhat

different parameters.

2.4.2.4 FWActions
An FWAction that can store data or modify the Workflow

depending on the output may be returned between FireWorks. An

FWAction can pass data to the next step, cancel the remaining

parts of the Workflow, or even add new FireWorks that are

defined within the object.

Figure 1. The FireWorks Workflow model

More sophisticated types of workflow operations can be used to

send different categories of FireWorks to different FireWorkers,

get the status of all existing jobs, where they’re running, and how

long they took to run or waited in the queue, create and modify

job priorities, or even handle job failures and crashes dynamically

by automatically creating FireWorks that fix crashed jobs through

an FWAction.

2.4.3 Basic Infrastructure
FireWorks has a loosely-coupled, modular infrastructure that is

intentionally hackable, allowing users to utilize some FireWorks

components without using everything in order to more easily

adapt it to their individual application(s).

FireWorks follows a centralized server and worker model,

meaning that there are two essential components to a FireWorks

installation: the LaunchPad and one or more FireWorkers.

2.4.3.1 LaunchPad
LaunchPad is the central server in FireWorks. LaunchPad’s

primary function is to manage workflows. When a user adds new

workflows, queries for the state of workflows, or re-runs existing

workflows, these commands are carried out through the

LaunchPad.

2.4.3.2 FireWorkers
FireWorks depends upon one or more workers, known as

“FireWorkers,” to run jobs. The FireWorkers request workflows

from the LaunchPad, execute them, and send back information. A

FireWorker can be as simple as the same workstation used to host

the LaunchPad or as complex as a national supercomputing center

with a queuing system.

Figure 2. The basic FireWorks infrastructure

These components are largely decoupled, making FireWorks

generally easier to use. End users can add new workflows to the

LaunchPad without worrying about the details of how and where

the workflows will be run, though they have the option to tailor

the details of job execution if they wish. This keeps the workflow

specifications lightweight, tidy, and easy to learn and use. On the

opposite end, administrators can configure worker computers

without worrying about where workflows are coming from or

what they look like, although they can easily and flexibly assign

jobs to certain resources if desired. Running FireWorks on a

heterogeneous set of worker computers is simple because it uses

essentially the same internal code to run on a simple workstation

as it does to run at a large supercomputing center.

3. APPROACH
BaseSite is the newly developed front-end user interface for

FireWorks. BaseSite aims to facilitate the use of FireWorks in

real-world scenarios, such as the Materials Project, by assisting

collaboration, particularly among users who may not have

experience or be comfortable with coding. This is accomplished

by providing a simple, visual way to monitor the system’s status.

Though BaseSite was initially designed for use with the Materials

Project, it can be utilized for any FireWorks application.

3.1 Design and Implementation
BaseSite is a website that serves as a performance dashboard for

monitoring the status of a FireWorks system A dashboard is a

visual display of the most important information needed to

achieve one or more objectives, consolidated and arranged on a

single screen so the information can be monitored at a glance [9].

Effective dashboards are easy to understand and can be utilized by

users as well as administrators.

3.1.1 Framework
BaseSite was developed using Django [10], an open source, high-

level Python Web framework that encourages rapid development

and clean, pragmatic design, making it particularly useful for the

creation of complex, database driven websites.

3.1.2 Querying Data
BaseSite gathers information by using MongoDB queries to

directly access the database that is associated with a particular

FireWorks system. For example, in the Materials Project

application of BaseSite, data is collected from a FireWorks

production database hosted at NERSC [11]. These queries are

run every time BaseSite is viewed, resulting in a live display of

the status of the current database.

3.2 Features
BaseSite includes several different views and features, including a

home page, index pages, and various information pages. Different

sections of content can be clicked on to easily navigate to more

detailed information, or URLs can be used to directly access

desired content.

3.2.1 Home Page
The BaseSite home page acts as the primary dashboard for

information monitoring. It features a count of the total completed

FireWorks to date as well as several different charts depicting the

current database status and important information about the most

recent FireWorks and Workflows.

Figure 3. A table found on the home page, depicting counts of

FireWorks and Workflows based on their current status.

“Defused” refers to jobs that were canceled, and “fizzled”

refers to jobs that have unexpectedly failed.

3.2.2 Index Pages
BaseSite contains two index pages, one for FireWorks and one for

Workflows. Each of these pages initially loads with information

about the most recently updated FireWorks or Workflows.

Figure 4. A table on the FireWorks index page

This information can be further sorted using simple click

navigation to view only FireWorks or Workflows of a certain

state.

Figure 5. A table displaying information about Fizzled

Workflows

3.2.3 Information Pages
Every FireWork or Workflow ID in BaseSite can be clicked on to

navigate to a page containing its JSON spec. Users can choose to

view the spec with varying levels of detail: less, more, or all.

Figure 6. The JSON spec for the FireWork with ID 354099,

displaying “less” information

The entirety of this data includes all of the input that was

specified at the time of the FireWork or Workflow’s creation,

which directory the run occurred in, how long the run took, and

several other important pieces of information.

4. FUTURE WORK
An alpha version of BaseSite is currently available as part of the

FireWorks installation. Plans for future work include the addition

of different charts and visualizations, simplification of the JSON

information pages, improved overall site navigation, and the

implementation of a search function to more easily locate data of

interest.

5. ACKNOWLEDGMENTS
This work was supported in part by TRUST (Team for Research

in Ubiquitous Secure Technology), which receives support from

the National Science Foundation (NSF award number CCF-

0424422), with additional support from Lawrence Berkeley

National Laboratory and the U.S. Department of Energy.

Special thanks to Anubhav Jain and Dan Gunter for their

mentorship and guidance throughout the duration of this project.

6. REFERENCES
[1] The Materials Project. http://www.materialsproject.org/.

[2] Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D.,

Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and

Persson, K.A. 2013. The Materials Project: A materials

genome approach to accelerating materials innovation.

Applied Physics Letters Materials, 2013, 1(1), 011002.

DOI= http://dx.doi.org/10.1063/1.4812323/.

[3] Gunter, D., Cholia, S., Jain, A., Kocher, M., Persson, K.,

Ramakrishnan, L., Ong, S.P., and Ceder, G. 2012.

Community Accessible Datastore of High-Throughput

Calculations: Experiences from the Materials Project. 5th

workshop on Many-Task Computing Grids and

Supercomputers (MTAGS), 2012.

[4] Gray, J. 2007. E-Science: A Transformed Scientific Method.

NRC-CSTB talk (Mountain View, CA, January 11, 2007).

[5] FireWorks 0.18 documentation.

http://pythonhosted.org/FireWorks/.

[6] Python Programming Language.

http://www.python.org/.

[7] A Brief Introduction to MongoDB.
http://www.10gen.com/static/downloads/ mongodb

introduction.pdf.

[8] Introducing JSON. http://www.json.org/.

[9] Few, S. 2006. Information Dashboard Design: The

Effective Visual Communication of Data.

[10] Django: The Web framework for perfectionists with

deadlines. https://www.djangoproject.com/.

[11] National Energy Research Scientific Computing

Center: NERSC. http://www.nersc.gov/.

